The Atomic Mass Scale

- ¹H weighs 1.6735 x 10⁻²⁴ g and ¹⁶O 2.6560 x 10⁻²³ g.
- We define: mass of ${}^{12}C = \text{exactly } 12 \text{ amu.}$
- Using atomic mass units:

1 amu =
$$1.66054 \times 10^{-24} \text{ g}$$

1 g = 6.02214×10^{23} amu

Mass Spectrometer – An instrument used to separate a mixture of samples with different masses. It gives the mass and relative abundance of each sample. The MS can be used to calculate average atomic mass. (2.2.1)

Steps in the operation of the mass spectrometer:

- 1 Vaporization sample is turned to gas.
- 2 Ionization beam of electrons causes sample to lose electrons (some bonds may be broken).
- 3 Acceleration electric field causes positive ions to accelerate.
- 4 Deflection magnetic field causes moving cations to be deflected (lightest deflected most)
- 5 Detection a detector determines the amount of each sample (isotope) present.

Relative Atomic Masses (A_r) (2.2.2)

- Relative atomic mass: average masses of isotopes:
 - Naturally occurring C: 98.892 % ¹²C + 1.108 % ¹³C.
- Average mass (A_r) of C: (0.98892)(12 amu) + (0.0108)(13.00335) = 12.011 amu.
- Relative atomic mass is also known as atomic weight (AW).
- Atomic weights are listed on the periodic table.

Example (2.2.2 and 2.2.3)

Use the mass spectrum of lead below to calculate the relative atomic mass of

lead.

Light and Waves

- All waves have a characteristic wavelength, λ , and amplitude, A.
- The frequency, v, of a wave is the number of cycles which pass a point in one second.
- The speed of a wave, v, is given by its frequency multiplied by its wavelength:
- For light, speed = c.

$$c = \nu \lambda$$

$$m \cdot s^{-1} \quad Hz (s^{-1}) \quad m$$

(a) Two complete cycles of wavelength λ

(b) Wavelength half of that in(a); frequency twice asgreat as in (a)

(c) Same frequency as (b), smaller amplitude

Examples

- 1 Calculate the wavelength of light with a frequency of 1.89 x 10¹⁸ Hz.
- Calculate the frequency of light with a wavelength of 585 nm.

Examples

1 Calculate the wavelength of light with a frequency of 1.89 x 10¹⁸ Hz.

1.59 x 10⁻¹⁰ m

Calculate the frequency of light with a wavelength of 585 nm.

 $5.12 \times 10^{14} \, \text{s}^{-1}$ or Hz

Line Spectra and the Bohr Model

Line Spectra

- Radiation composed of only one wavelength is called monochromatic.
- Radiation that spans a whole array of different wavelengths is called continuous.
- White light can be separated into a continuous spectrum of colors.
- Note that there are no dark spots on the continuous spectrum that would correspond to different lines.

Bohr Model

• Colors from excited gases arise because electrons move between energy states in the atom.

Bohr Model

Types of Spectra

- **Emission Spectrum** a set of colored lines produced by "downward" transitions between energy levels.
- produced when electrons are excited (by electricity or flame) and then return to lower energy levels.
- **Absorption Spectrum** a continuous spectrum with "dark lines" missing. It is produced by "upward" transitions between energy levels.
- produced when white light (or IR, UV, other) is shown through a sample. Specific colors are absorbed.

The two spectra are "complimentary." The lines and colors involved are exactly the same.