Ionization Energy

•First Ionization energy is the energy required to remove an electron from an atom of an element, producing a cation:

$$M \longrightarrow M^+ + e^-$$

Periodic Trends in Ionization Energies

- •Ionization energy decreases down a group.
- •This means that the outermost electron is more readily removed as we go down a group.
- •As the atom gets bigger, it becomes easier to remove an electron from the most spatially extended orbital.
- •Ionization energy generally increases across a period.
- •As we move across a period, Z_{eff} increases. Therefore, it becomes more difficult to remove an electron.
- •Two exceptions: removing the first p electron and removing the fourth p electron.

- •The s electrons are more effective at shielding than p electrons. Therefore, forming the s^2p^0 becomes more favorable. (lower than expected first ionization energy for elements in group 13)
- •When a second electron is placed in a p orbital, the electron-electron repulsion increases. When this electron is removed, the resulting s^2p^3 is more stable than the starting s^2p^4 configuration. Therefore, there is a decrease in ionization energy. (lower than expected first ionization energy for elements in group 16)

Examples – Put each set in order of increasing first ionization energy:

- 1. P, Cl, Al, Na, S, Mg
- 2. Ca, Be, Ba, Mg, Sr
- 3. Ca, F, As, Rb, O, K, S, Ga

Examples – Put each set in order of increasing first ionization energy:

- 1. P, Cl, Al, Na, S, Mg
- 2. Ca, Be, Ba, Mg, Sr
- 3. Ca, F, As, Rb, O, K, S, Ga
- 1. Na < Al < Mg < S < P < Cl
- $2. \ Ba \le Sr \le Ca \le Mg \le Be$
- 3. Rb < K < Ga < Ca < As < S < O < F

Variations in Successive Ionization Energies

•There is a sharp increase in ionization energy when a core electron is removed.

TABLE 7.2	Successive Values of Ionization Energies, I, for the Elements Sodium through Argon (kJ/mol)						
Element	I_1	I_2	I_3	I_4	I_5	I_6	I_7
Na	496	4560		(inner-shell electrons)			
Mg	738	1450	7730				
Al	578	1820	2750	11,600			
Si	786	1580	3230	4360	16,100	_	
P	1012	1900	2910	4960	6270	22,200	
S	1000	2250	3360	4560	7010	8500	27,100
Cl	1251	2300	3820	5160	6540	9460	11,000
Ar	1521	2670	3930	5770	7240	8780	12,000

• Notice the large increase after the last valence electron is removed. This chart can be used to determine the number of valence electrons in an atom of an element.

Electronegativity - the tendency of a bonded atom to attract shared electron to itself. (3.2.4)

Calculated from ionization energy and electronaffinity.

Trends:

Top to bottom - electronegativity decreases

Left to Right - electronegativity increases (excluding noble gases)