Presentation 1.2

Scientific Measurement

Chemistry 2 Honors Jeff Venables Northwestern High School

Scientific Measurement

- •Qualitative Measurements -
- -Observations that are recorded in a descriptive (nonnumerical) form.
- •Quantitative Measurements -
- -Measurements that are recorded using numbers and units.

Units of Measurement

- •Quantity Something that has magnitude or size.
- •Unit -
- -The standard used to measure a quantity.
- -Examples?
- •SI -
- –International System of units (metric)SI units

Quantity	Symbol	Unit	Abbreviation
Length			
Mass			
Time			
Temperature			
Amount of			
Substance			
Electric Current			
Luminous			
Intensity			
	I _{IV} T † n /	mole meter kilogi kelvin second ampe	ram cd m kg ere A K s

SI Metric Prefixes

Prefix	Abbrev.	Multiplier	Meaning	Example
Giga-				
Mega-				
Kilo-				
(Base unit)				
Deci-				
Centi-				
Milli-				
Micro-				
Nano-				
Pico-				
Femto-				

SI Metric Prefixes

Prefix	Abbrev.	Multiplier	Meaning	Example
Giga-	G	10 ⁹	1 000 000 000	1 Gigameter (Gm) = 1 x 10 ⁹ m
Mega-	M	10 ⁶	1 000 000	1 <u>Megameter</u> (Mm) = 1 x 10 ⁶ m
Kilo-	k	10 ³	1 000	1 kilo meter (km) = 1 x 10 ³ m
(Base unit)		100	1	1 meter (m)
Deci-	d	10-1	0.1	1 decimeter (dm) = 0.1 m
Centi-	С	10-2	0.01	1 centimeter (cm) = 0.01 m
Milli-	m	10 ⁻³	0.001	1 millimeter (mm) = 0.001 m
Micro-	μ	10-6	0.000 001	1 micrometer (µm) = 1 x 10 ⁻⁶ m
Nano-	n	10-9	0.000 000 001	1 nanometer (nm) = 1 x 10 ⁻⁹ m
Pico-	р	10-12	0.000 000 000 000	1 picometer (pm) = 1 x 10 ⁻¹² m
Femto-	f	10-15	0.000 000 000 000 000 001	1 femtometer (fm) = 1 x 10 ⁻¹⁵ m

Scientific Notation

- •A number between 1 and 10 multiplied by 10 raised to some power.
- -If the power of 10 is positive, the number is greater than 10.
- -If the power of 10 is negative, the number is less than 1.
- •Examples Write the following in scientific notation:
- 1. 24 900 4. 0.000 000 036 0
- 2. 0.000 56 5. 1 500 000 000 000
- 3. 375 000 000 6. 6.51

Write each of the following in standard notation:

In a calculator, 5.07×10^{-7} would be entered as 5.07 EE (or EXP) -7.

Significant Figures and Error

- •Accuracy Closeness of a measurement to the true value.
- •Precision Closeness of a series of measurements to one another. (alt. the number of decimal places to which a measurement is read)

•% Error – A measure of accuracy:

$$\%error = \frac{\exp erimental - theoretical}{theoretical} x100$$

Example – If you measure the boiling point of ethanol to be 74.8°C, and the accepted boiling point is 78.4°C, what is your percent error?

- •Significant Figures A measure of precision of a single measurement.
- Discloses the number of digits that are actually part of the measurement (more sig figs mean more precision)

What digits are significant?

- -If it is only a placeholder, it is not significant.
- 1. All Non-Zero Digits are significant
- 2. All Zeros that come between nonzero digits are significant (ex: 4008)
- 3. Leading zeros are never significant (ex: 0.002)
- 4. Trailing zeros depend on decimal point:
- -If there is a decimal point (written), trailing zeros are significant.
- If there is no decimal point, trailing zeros are only placeholders (not significant)

Look for a Decimal Point

Moving from the proper side, skip all zeros until you get to the first non-zero digit. All remaining digits, including zeros, are significant.

- •Scientific Notation all digits are significant (eliminates ambiguity)
- •ONLY APPLIES TO MEASUREMENTS NOT COUNTING!!!

12 500

0.000 000 830

Examples: How many significant figures are in each of the following?

- 1. 52300 m
- 2. 0.000487 kg
- 3. 29.0400 s
- 4. 507 people
- 5. 230,050 cm
- 6. 45.600 A

Examples: How many significant figures are in each of the following?

- 1. 52300 m
- 2. 0.000487 kg 3
- 3. 29.0400 s
- 4. 507 people ...
- 5. 230,050 cm 5
- 6. 45.600 A 5

Significant figures in calculations

•Multiplication and division: Round the answer to the number of significant figures in the measurement that has the least significant figures.

-Examples: 134.92 mL x 2.7 g/mL

2334.88765 m ÷ 35.1 s

Significant figures in calculations

•Multiplication and division: Round the answer to the number of significant figures in the measurement that has the least significant figures.

```
-Examples:
134.92 mL x 2.7 g/mL
94 g
```

2334.88765 m ÷ 35.1 s 9.54 m/s •Addition and Subtraction – Answer is rounded off to the <u>decimal place</u> where the least precise measurement ends.

Example

13.462 g

- 11.7 g

- •Addition and Subtraction Answer is rounded off to the <u>decimal place</u> where the least precise measurement ends.
- Example

STOP!!!!!

Program will crash if you advance!

- C-1.1 Apply established rules for significant digits, both in reading a scientific instrument and in calculating a derived quantity from measurement.
- C-1.3 Use scientific instruments to record measurement data in appropriate metric units that reflect the precision and accuracy of each particular instrument.
- Identify fundamental SI (metric) base units.
- Identify and apply metric prefixes.
- Express numbers in standard and scientific notation.