Using Initial Rates to Determine Rate Laws

- A reaction is zero order in a reactant if the change in concentration of that reactant produces no effect.
- A reaction is first order if doubling the concentration causes the rate to double.
- A reacting is *n*th order if doubling the concentration causes an 2^{*n*} increase in rate.
- Note that the rate constant does not depend on concentration.

- This method requires that a reaction be run several times.
- The initial concentrations of the reactants are varied.
 The goal is to vary only one concentration at a time
- The reaction rate is measured just after the reactants are mixed.

Example

• For the reaction

 $BrO_3^- + 5 Br^- + 6H^+ \longrightarrow 3Br_2 + 3 H_2O$

• The general form of the Rate Law is

 $Rate = k[BrO_3^{-}]^m[Br^{-}]^n[H^{+}]^p$

• We use experimental data to determine the values of m, n,and p

Initial concentrations (M)

[BrO ₃ ⁻]	[Br⁻]	[H ⁺]	Rate (M/s)	
0.10	0.10	0.10	8.0 x 10 ⁻⁴	
0.20	0.10	0.10	1.6 x 10 ⁻³	
0.20	0.20	0.10	<mark>3.2</mark> x 10 ^{−3}	
0.10	0.10	0.20	<mark>3.2 x</mark> 10 ^{−3}	
Now we have to see how the rate changes with concentration				

- 1. Determine the Rate Law.
- 2. Calculate the value of k, and determine its units.
- 3. Calculate the initial rate of the reaction if the initial concentrations are:

 $[BrO_3^{-}] = 0.20 M$ $[Br^{-}] = 0.30 M$ $[H^+] = 0.10 M$

- 1. Rate = $k[BrO_3^-][Br^-][H^+]^2$
- 2. $k = 8.0 \text{ M}^{-3} \text{ s}^{-1}$
- 3. Rate = $4.8 \times 10^{-3} \text{ M s}^{-1}$

$NH_4^+ + NO_2^- \longrightarrow N_2^- + 2H_2O$

<u>Exp</u>	$[NH_4^+]$	$[NO_2^-]$	Initial Rate
1	0.100 M	0.0050 M	1.35 x 10 ⁻⁷
2	0.100 M	0.010 M	2.70 x 10 ⁻⁷
3	0.200 M	0.010 M	5.40 x 10 ⁻⁷

- 1. Determine the rate law.
- 2. Calculate k, and determine its units.

$NH_4^+ + NO_2^- \longrightarrow N_2^- + 2H_2O$

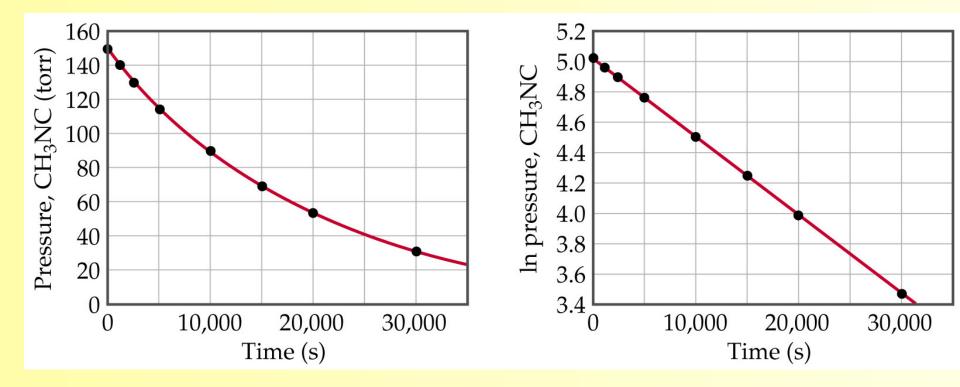
<u>Exp</u>	$[NH_4^+]$	$[NO_2^-]$	Initial Rate
1	0.100 M	0.0050 M	1.35 x 10 ⁻⁷
2	0.100 M	0.010 M	2.70 x 10 ⁻⁷
3	0.200 M	0.010 M	5.40 x 10 ⁻⁷

 Determine the rate law. Rate = k [NH₄⁺][NO₂⁻]
 Calculate k, and determine its units.

 $k = 2.70 \text{ x } 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$

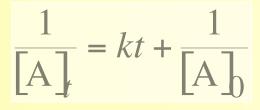
First Order Reactions

- Goal: convert rate law into a convenient equation to give concentrations as a function of time.
- For a first order reaction, the rate doubles as the concentration of a reactant doubles.


Rate Law
$$\begin{cases} Rate = -\frac{\Delta[A]}{\Delta t} = k[A] \\ \ln[A] - \ln[A]_{0} = -kt \\ \ln\frac{-A}{A} \\ \ln\frac{-A}{A} \\ \frac{A}{A} \\ \frac$$

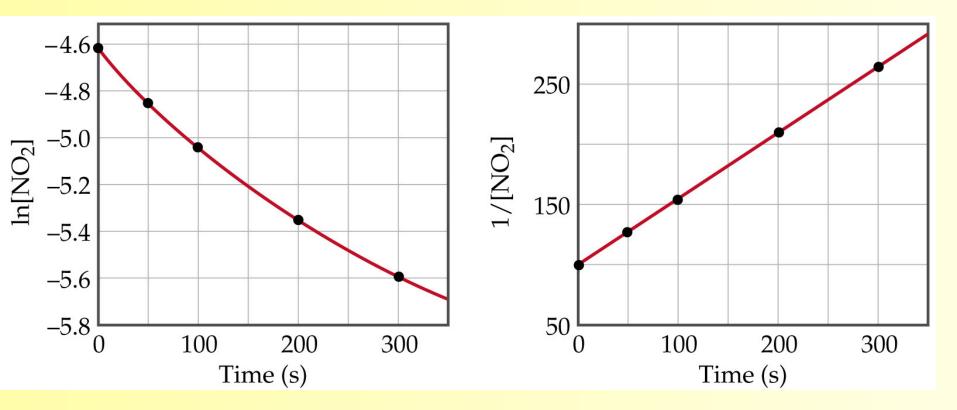
The Change of Concentration with Time

- A plot of ln[A]_t versus t is a straight line with slope -k and intercept ln[A]₀ (for first order)
- In the above we use the natural logarithm, ln, which is log to the base *e*.


First Order Reactions

 $\ln[A]_{t} = -kt + \ln[A]_{0}$

Second Order Reactions


• For a second order reaction with just one reactant

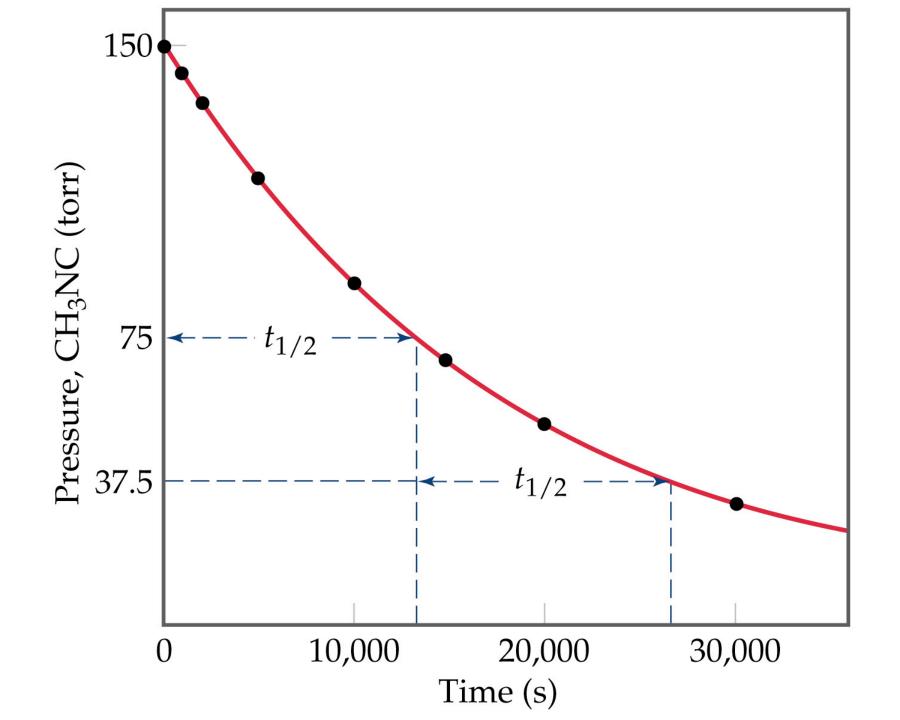
- A plot of 1/[A]_t versus t is a straight line with slope k and intercept 1/[A]₀
- For a second order reaction, a plot of $\ln[A]_t$ vs. *t* is not linear.

Second Order Reactions

$$\frac{1}{\left[A\right]_{t}} = kt + \frac{1}{\left[A\right]_{0}}$$

Zero Order Rate Law

- Rate = $k[A]^0 = k$
- Rate does not change with concentration.
- Integrated $[A] = -kt + [A]_0$
- When $[A] = [A]_0 / 2$ $t = t_{1/2}$
- $t_{1/2} = [A]_0 / 2k$


Zero Order Rate Law

- Most often when reaction happens on a surface because the surface area stays constant.
- Also applies to enzyme chemistry.

Half-Life

- Half-life is the time taken for the concentration of a reactant to drop to half its original value.
- For a first order process, half life, $t_{\frac{1}{2}}$ is the time taken for $[A]_0$ to reach $\frac{1}{2}[A]_0$.
- Mathematically,

$$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

For a second order reaction, half-life depends on the initial concentration:

$$t_{1/2} = -\frac{1}{k[A]_0}$$

Summary of Rate Laws

	Zero Order	1 st Order	2 nd Order
Diff. Rate Law	K	k[A]	K[A] ²
Int. Rate Law	$[A] = -kt + [A]_{o}$	$ln [A] = -kt + ln [A]_o$	$1/[A] = kt + 1/[A]_{o}$
Straight Line Plot	[A] vs. t m = -k	ln [A] vs. t m = -k	1/[A] vs. t m = k
Half-Life	[A] _o /2k	(ln 2)/k	1/k[A] _o