IB Chemistry Lesson 1.1

States of Matter

Gas

Total disorder; much empty space; particles have complete freedom of motion; particles far apart Liquid

Disorder; particles or clusters of particles are free to move relative to each other; particles close together Crystalline solid

Ordered arrangement; particles are essentially in fixed positions; particles close together

Changes of State

Page 2

Elements, Compounds, and Mixtures

A Atoms of an element

C Molecules of a compound

B Molecules of an element

D Mixture of two elements and a compound

Antoine Lavoisier: mass is conserved in a chemical reaction.

Chemical equations: descriptions of chemical reactions.

Two parts to an equation: reactants and products:

 $2H_2 + O_2$ $2H_2O$

The chemical equation for the formation of water can be visualized as two hydrogen molecules reacting with one oxygen molecule to form two water molecules:

$$2Na + 2H_2O \longrightarrow 2NaOH + H_2$$

 $2K + 2H_2O \longrightarrow 2KOH + H_2$

Stoichiometric coefficients: numbers in front of the chemical formulas; give ratio of reactants and products.

Example: $2K + 2H_2O \rightarrow 2KOH + H_2$ Why is there no coefficient here?

BALANCE THE FOLLOWING EQUATIONS:

1. $_{\text{KCIO}_3} \rightarrow _{\text{KCI}} + _{\text{O}_2}$

2.
$$_{N_2} + _{H_2} \rightarrow _{NH_3}$$

3. $Ca_3(PO_4)_2 + NaOH \rightarrow Na_3PO_4 + Ca(OH)_2$

4. $_{\text{K}}$ + $_{\text{H}_2}$ O \rightarrow $_{\text{KOH}}$ + $_{\text{H}_2}$

What Balanced Equations Tell Us

- Balanced chemical equations give number of molecules that react to form products.
- Interpretation: ratio of number of moles of reactant required to give the ratio of number of moles of product.
- These ratios are called *stoichiometric ratios*.
- Example: $2H_2 + O_2 \rightarrow 2H_2O$
 - 2 moles (or molecules) of hydrogen react with one mole (or molecule) of oxygen to produce 2 moles (or molecules) of water.