IB Chemistry Lesson 1.2 Units of Measurement

- Quantity Something that has magnitude or size.
- Unit
 - The standard used to measure a quantity.
 - Examples?

- · SI -
 - International System of units (metric)

SI units

Quantity	Symbol	Unit	Abbreviation
Length			
Mass			
Time			
Temperature			
Amount of			
Substance			
Electric Current			
Luminous			
Intensity			
	I IV T	mole meter kilogram kelvin second ampere	n cd ^m kg A K s mol

Page 2

Relative Atomic Masses (A_r)

- •Relative atomic mass: average masses of isotopes: —Naturally occurring C: $98.892 \% ^{12}C + 1.108 \% ^{13}C$.
- •Average mass (A_r) of C: (0.98892)(12 amu) + (0.0108)(13.00335) = 12.011 amu.
- •Relative atomic masses are listed on the periodic table.

Relative Molecular/Formula Mass (M_r)

- •The sum of the atomic masses of the atoms that make up a compound (no units).
 - •Examples:
 - 1.Determine the relative Molecular Mass of H₂SO₄.
 - 2. Determine the relative formula mass of $Mg_3(PO_4)_2$.
 - 3. Determine the relative Molecular Mass of Ca(NO₃)₂·4H₂O

Molar Mass

- -The mass of one mole of a substance (element or compound).
- -Numerically equal to A_{r} or M_{r} , but units are g $\text{mol}^{\text{-}1}$

Page 6

Examples - Make the following conversions:

- 1. Convert 21.98 g of CO to moles.
- 2. Convert 3.60 x 10^{24} molecules of N_2 to moles.
- 3. Convert 38.4 g of Mg(BrO₃)₂ to molecules.
- 4. Convert 5.03 x 10²¹ molecules of H₂SO₄ to grams.
- 5. Convert 33.9 grams of CO₂ to liters (at STP).

Percentage Composition from Formulas

•Percent composition is the atomic weight for each element divided by the formula weight of the compound multiplied by 100:

% Element = $\frac{\text{(Atoms of Element)(molar mass of element)}}{\text{molar mass of Compound}} \times 100$

Examples: Calculate Percentage Composition:

- 1. CO₂
- 2. Mg(ClO₂)₂
- $3.(NH_4)_3PO_4$

Empirical Formula: The simplest whole number ratio of atoms of each element in a compound.

Example: The empirical formula of glucose $(C_6H_{12}O_6)$ is CH_2O .

What about...

- 1. H₂O₂
- 2. C₄H₁₀
- 3. C₃H₈O₂

To determine the empirical formula of a compound from experimental data:

- Assume any percentages are masses, in grams.
- Convert all masses to moles (divide by molar mass)
- Divide by the smallest number of moles if all are whole numbers (within 0.1), the numbers are the subscripts.
- If not, make whole numbers by multiplying all moles by given integer (.5 x 2, .33 or .67 by 3, .25 or .75 by 4, etc.). Now, the numbers are the subscripts.
- * Hydrates are compounds with water molecules incorporated into their structure. Their formulas are determined using % (compound) and % (water) to determine the ratio of water molecules per formula unit of the compound (example: CuSO₄·5H₂O)

Examples: Determine the Empirical formulas:

1. 63.6 % N, 36.4 % O

2. 54.5 % C, 9.20 % H, 36.3 % O

3. 58.9 % NiSO₄, 41.1 % H₂O

To Determine Molecular Formula:

- First determine empirical formula
- Divide:

- You will get a whole number. Multiply all subscripts in the empirical formula by the resulting integer.

Examples: Determine Molecular Formula

1. A compound is 30.4 % N and 69.6 % O, with a molar mass of 92.14.

2. A compound contains 55.8 % C, 7.02 % H, and 37.2 % O, with a molar mass of 129.14.

STOICHIOMETRY

- * Coefficients can be used to convert moles of one substance to moles of another substance.
- * All other conversions are still used.

EXAMPLES

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

what mass of oxygen would be required to react completely with 275 g of propane?

What mass of carbon dioxide would be produced?

What mass of water would be produced?

EXAMPLES: $_{C_4H_{10}} + _{O_2} \rightarrow _{CO_2} + _{H_2O}$

- 1. What mass of water is produced from 4.39 dm³ of oxygen gas at STP?
- 2. How many molecules of butane must react to produce 3.88 dm³ of carbon dioxide?

LIMITING REACTANT (1.4.2)

- A chemical reaction proceeds until one (or more) of the reactants runs out.
- The reactant that runs out is called the limiting reactant or limiting reagent.
- To determine the limiting reagent, you can:
 - Use the amount of one reactant to determine how much of other reactant(s) is(are) needed, and compare that to how much you have, or
 - Use the amounts of each reactant to determine how much product will be produced. The reactant that produces the least product is the limiting reagent.

$Al(s) + Fe_2O_3(s) \longrightarrow Fe(s) + Al_2O_3(s)$

• If 35.9 g of aluminum and 63.7 g of iron (III) oxide are mixed, what is the limiting reagent?

What mass of iron will be produced by this reaction?

YIELDS

- Theoretical Yield: The amount of product (usually in grams) calculated using stoichiometry. (1.4.1)
- Actual Yield: The amount of product actually produced by a reaction (measured in the laboratory)
- Percent Yield: The amount of product produced expressed as a percentage of the amount of product expected. (1.4.3)

% Yield =
$$\frac{Actual\ Yield}{Theoretical\ Yield} \times 100\%$$

$\overline{Al(s)} + \overline{Fe_2O_3}(s) \longrightarrow \overline{Fe(s)} + \overline{Al_2O_3(s)}$

 If 35.9 g of aluminum and 63.7 g of iron (III) oxide are mixed, what is the theoretical yield of iron metal?

 If the actual yield of iron metal is 18.7 g, what is the percent yield?